水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (11): 115-126.doi: 10.11660/slfdxb.20251111

• • 上一篇    

地应力反演修正的Stacking集成模型与工程应用

  

  • 出版日期:2025-11-25 发布日期:2025-11-25

Stacking ensemble model for in-situ stress inversion correction and its engineering application

  • Online:2025-11-25 Published:2025-11-25

摘要: 地应力反演是获取地下工程初始应力状态的重要手段。为解决单一智能算法反演的泛化能力不足问题及提高反演精度,提出一种基于Stacking算法的多模型融合地应力反演修正方法。以有限元计算应力结果、多元线性回归值与钻孔测点实测数据之间的误差为输入,构建LightGBM、XGBoost和线性回归作为基学习器,RidgeCV作为元学习器的Stacking集成模型,通过学习误差规律生成修正误差,采用交叉验证与网格搜索选取最优参数。既保留了有限元模型的结构物理意义,又能够弥补传统方法的非线性拟合缺陷。在工程实例中应用表明,与传统多元线性回归方法相比,该方法的均方根误差降低约32%,相对误差绝对值的平均值降低45%。同时,引入SHAP模型对各构造工况在误差预测中的贡献进行解释分析以提升基于Stacking反演修正模型的可解释性。研究结果表明,该方法在地应力反演修正方面具有良好的适用性与推广价值,可为工程设计与安全评价提供可靠支撑。

关键词: 地应力反演, Stacking算法, 有限元分析, 机器学习, 误差修正, SHAP解释模型

Abstract: In-situ stress inversion is a crucial method for determining the initial stress state in underground engineering. To improve the inversion accuracy, this study proposes a multi-model fusion method for in-situ stress inversion correction based on the stacking algorithm, demonstrating the limitations in single intelligent algorithms, particularly their insufficient generalization capabilities. We develop a stacking ensemble model with input data from the errors of finite element analysis results and multiple linear regression values against the in-situ measurements obtained at borehole monitoring points. This model adopts LightGBM, XGBoost and Linear Regression as base learners and RidgeCV as the meta-learner, and determines error correction by learning the underlying error patterns, with the optimal parameters selected through cross-validation and grid search. This method preserves structural and physical significance inherent in the finite element model while overcoming the nonlinear fitting deficiencies of traditional methods. Its application to an engineering case study demonstrates that compared to conventional multiple linear regression methods, it reduces the Root Mean Square Error (RMSE) by roughly 32% and the Mean Absolute Relative Error (MARE) by 45%. We use the SHapley Additive exPlanations (SHAP) model to interpret the contributions of various geological factors on the predicted and corrected errors, thereby enhancing the interpretability of this stacking-based inversion correction model. This study shows our new method exhibits strong applicability and significant potential for generalization in in-situ stress inversion correction, and would help engineering design and safety assessment.

Key words: in-situ stress inversion, stacking algorithm, finite element analysis, machine learning, error correction, SHAP interpretability model

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn