水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (6): 121-133.doi: 10.11660/slfdxb.20250612

• • 上一篇    下一篇

岩爆等级主辅模型协同预测方法及其应用研究

  

  • 出版日期:2025-06-25 发布日期:2025-06-25

Primary-auxiliary model collaborative prediction method for rockburst intensity and its applications

  • Online:2025-06-25 Published:2025-06-25

摘要: 岩爆预测已成为地下工程安全建设与地质灾害防治领域亟需解决的重要课题之一。为尽可能充分地考虑岩爆各种主要因素的影响,提高岩爆等级预测的准确性,本文基于多模型分步预测的思想,提出了岩爆等级主模型与辅助模型协同预测方法。同时,基于该方法研发了岩爆等级智能预测软件,并应用于南宁抽水蓄能电站,对厂房段、岔管段的岩爆倾向性进行评估。结果表明,该方法预测结果准确率高、与工程实际情况相吻合,软件简单实用,易于被工程技术人员掌握。

关键词: 岩爆, 预测, 机器学习, 岩爆等级

Abstract: Rockburst prediction has become one of the critical issues that urgently need to be addressed in the fields of underground construction safety and geological disaster prevention. To fully consider the influence of various key factors on rockburst and improve the prediction accuracy of rockburst intensity, this paper describes a new collaborative prediction method based on primary and auxiliary models, grounded in the concept of multi-model stepwise predictions. Using this method, we have developed an intelligent software for rockburst intensity prediction and applied to the Nanning Pumped Storage Power Station to assess the rockburst tendency in its powerhouse and tunnel bifurcation sections. The results show our method achieves high prediction accuracy and agrees well with the actual conditions. The software is simple, practical, and easy for engineering technicians to use.

Key words: rockburst, prediction, machine learning, rockburst intensity

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn