水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (11): 101-114.doi: 10.11660/slfdxb.20251110

• • 上一篇    下一篇

图像与点云多模态感知下数字孪生地下洞室群建模研究

  

  • 出版日期:2025-11-25 发布日期:2025-11-25

Study on digital twin modeling of underground cavern groups under image and point cloud multimodal sensing

  • Online:2025-11-25 Published:2025-11-25

摘要: 高精度三维模型是水利工程数字化、信息化的核心载体,而数字孪生建模作为一种高保真建模手段,能够实现物理实体到虚拟模型的动态精确映射。然而,现有建模技术在复杂水利场景下面临双重挑战:单模态传感器在复杂施工环境下存在盲区和遮挡问题,多模态感知数据能够弥补该固有缺陷,但因密度差异大和重叠率低等导致配准融合性能较差。针对以上问题,本文提出图像与点云多模态感知下数字孪生地下洞室群建模方法,利用图像三维重建技术与三维激光扫描技术多模态感知水工地下洞室群跨源点云数据,弥补了单模态传感器难以全面感知复杂洞室群空间信息的缺陷;设计了双路径特征融合注意力模块(DPFFA)嵌入Geotransformer模型主干网络,增强网络对全局结构与局部细节的多尺度特征融合,克服因跨源点云密度差异及缺失等导致的单路径注意力失效问题,进而基于精确配准后的跨源点云建立完整高精度数字孪生模型。将该方法用于卡拉水电站地下洞室群,在点重叠率为20%、40%、60%、80%的点云数据集上进行实验,配准召回率(RR)分别达到26.90%、72.50%、84.40%、86.90%,相比未改进模型分别提升了3.20%、11.20%、8.20%、2.50%,并通过方法对比体现了所提配准方法的优越性,体现了所建立数字孪生地下洞室群模型的精确性,并且能够为数字孪生建模提供了新的有效技术支持。

关键词: 地下洞室群, 多模态感知, 图像, 点云, 点云配准, Geotransformer, 数字孪生建模

Abstract: High-precision 3D models serve as fundamental tools for the digitalization and informatization of hydraulic projects. As a high-fidelity approach, digital twin modeling enables dynamic and accurate mapping between physical entities and virtual models. However, previous modeling technologies have faced dual challenges in complicated hydraulic project scenarios-single-modal sensors suffer from blind spots and occlusions, while multimodal sensing data can compensate for these defects but often leads to poor performance in data registration and data fusion due to their large density differences and low overlap rates. This paper develops a new method for modeling digital twin underground cavern groups using image and point cloud multimodal sensing technologies. To overcome the limitation of single-modal sensors, this method adopts 3D image reconstruction and 3D laser scanning to acquire cross-source point cloud data of hydraulic underground cavern groups, fully perceiving the spatial information of the groups. We design a Dual-path Feature Fusion Attention (DPFFA) module and embed it into the Geotransformer backbone network to enhance its network capability of fusing the multi-scale features of global structures and local details, avoiding single-path attention failure caused by cross-source point cloud density differences and data missing. Then, we achieve a complete and high-accuracy digital twin model based on the accurately registered cross-source point clouds. This method is applied to the underground cavern group at the Kala hydropower station, and tested against the point cloud datasets with overlap rates of 20%, 40%, 60%, and 80%. Results show its registration recalls (RR) up to 26.9%, 72.5%, 84.4%, and 86.9% respectively, or an increase of 3.2%, 11.2%, 8.2%, and 2.5% respectively in comparison to those of the unimproved model. This demonstrates the superiority of our registration approach and validates the accuracy of the new model, thus promoting digital twin modeling improvement.

Key words: underground cavern, multimodal perception, image, point cloud, point cloud registration, Geotransformer, digital twin modeling

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn