水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (4): 97-107.doi: 10.11660/slfdxb.20250410

• • 上一篇    下一篇

Kolmogorov-Arnold网络在长江中下游水位预报中的应用

  

  • 出版日期:2025-04-25 发布日期:2025-04-25

Application of Kolmogorov–Arnold networks to water level forecasting in middle and lower Yangtze River

  • Online:2025-04-25 Published:2025-04-25

摘要: 使用Kolmogorov-Arnold网络(KAN)构建了一种数据驱动的水位预报方法,将水文变量的复杂关系分解为一系列一元函数的线性组合,从而准确地捕捉水文数据的变化趋势。以长江中下游莲花塘站和沙市站的流量与水位数据为基础,进行水位预报应用。结果表明,KAN模型七日平均绝对误差分别为0.187 m(莲花塘)和0.109 m(沙市)。以莲花塘站为例,KAN模型相较于传统的多层感知机、长短期记忆网络、门控循环单元网络和自注意力机制模型预报精度分别提高了20.1%、45.0%、16.5%和13.0%。为了进一步提升对KAN模型的理解和认识,进行了敏感性分析和简化实验。结果表明,短期内的上游流量预报对下游水位有显著影响。KAN模型能够通过极少的模型参数揭示上游流量与下游水位变化的关系,表现出显著的可解释性。

关键词: 水位预报, Kolmogorov-Arnold网络, 机器学习, 长江中游, 可解释性

Abstract: A data-driven water level forecasting method is constructed using Kolmogorov-Arnold Networks (KAN), which decomposes the complex relationships among hydrological variables into a linear combination of univariate functions, enabling accurate capture of the trends in hydrological data. The method has been applied to water level forecasting based on discharge and water level data from the Lianhuatang and Shashi stations in the middle and lower Yangtze River. Results show the KAN model has a seven-day mean absolute error of 0.187 m at Lianhuatang and 0.109 m at Shashi. In the case of Lianhuatang, it improves forecasting accuracy by 20.1%, 45.0%, 16.5%, and 13.0% compared to traditional Multi-Layer Perceptron, Long Short-Term Memory network, Gated Recurrent Unit network, and Transformer models, respectively. To deepen our understanding of this model further, sensitivity analysis and simplification tests are conducted. Results indicate its short-term upstream discharge forecasting significantly affects the predicted downstream water levels. Equipped with a minimal number of parameters, it achieves effectively the relationship between upstream discharge and downstream water level changes, demonstrating remarkable interpretability.

Key words: water level forecasting, Kolmogorov-Arnold networks, machine learning, middle reaches of the Yangtze River, interpretability

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn