水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (8): 57-70.doi: 10.11660/slfdxb.20250806

• • 上一篇    下一篇

平朔矿区矿井涌水智能溯源及采煤策略干预分析

  

  • 出版日期:2025-08-25 发布日期:2025-08-25

Intelligent traceability of mine water inrush and intervention analysis of mining strategy in Pingshuo mining area

  • Online:2025-08-25 Published:2025-08-25

摘要: 采矿活动影响矿区地下水离子浓度的含量,采煤策略的改变对不同含水岩组的影响存在显著异质性,沿用水化学特征经验值判别水体来源可靠度不足。本研究采用因果推断模型描述水化学特征的演化情况和异质性特征,提出了基于随机森林和广义随机森林的矿井水溯源推断模型。基于平朔矿区近20年的地下水化学检测数据,结合随机森林模型和数据增强手段,实现地下含水岩组的智能溯源,准确率提高至97%以上。研究结果表明,采煤策略的调整对含水岩组的影响显著,尤其是采空水和砂岩水,表现出强烈的离子浓度异质性,进而影响溯源模型的判别能力。本研究揭示了采煤策略调整对含水岩组水化学特征的变化机制,为矿区水资源管理优化提供了科学指导。

关键词: 机器学习, 智能溯源, 地球化学, 广义随机森林, 异质性分析

Abstract: Mining activities significantly affect ion concentration in groundwater, and changes in mining strategies exhibit notable heterogeneity in their impact on different aquifer lithologies. Traditional methods lack reliability in identifying water sources, since they are based on empirical groundwater chemical characteristics. This study adopts causal inference models to describe the evolution and heterogeneity of water chemical characteristics, and presents a groundwater traceability inference model based on Random Forest (RF) and Generalized Random Forest (GRF). Using nearly 20 years of groundwater chemical data from the Pingshuo mining area, and combining the RF model with data augmentation techniques, we have achieved intelligent traceability of aquifer lithologies with an accuracy of exceeding 97%. The results indicate adjustments in mining strategies have a significant impact on aquifer lithologies, particularly on the water quality from mining voids and sandstone, which exhibits strong heterogeneity in ion concentrations. The heterogeneity further affects the traceability model's classification ability. This study reveals the mechanisms of how certain mining strategy intervention influences the variations in water chemical characteristics in different aquifer lithologies, and helps optimize groundwater resource management in mining areas.

Key words: machine learning, intelligent traceability, geochemistry, generalized random forest (GRF), heterogeneity analysis

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn