水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (6): 109-120.doi: 10.11660/slfdxb.20250611

• • 上一篇    下一篇

掺砾相变黏土心墙冬季施工多热源联合控温优化

  

  • 出版日期:2025-06-25 发布日期:2025-06-25

Optimization of multiple heating measures for winter construction temperature control of gravel-clay core wall with phase change material

  • Online:2025-06-25 Published:2025-06-25

摘要: 掺砾相变黏土可避免心墙冬季施工期间土料发生冻融破坏,如何以低成本高效提升掺砾相变黏土这一新型筑坝材料的防冻控温性能是需解决的重要问题。为此,本文针对掺砾相变黏土心墙冬季施工提出了一种多热源联合控温优化方法。首先,分别提出了在掺砾相变黏土的生产过程和心墙铺筑后通风加热及红外辐射的增温工艺;然后,以增温工艺总耗时和总耗能最小为目标,构建多源联合控温的多目标优化模型;进而,给出了基于改进三向理想解排序(BMW-TOPSIS)的非支配排序遗传算法(NSGA-Ⅱ)的多热源优化方法。实例分析表明,多年平均风速1.8 m/s下土体初温为4 ℃的掺砾相变黏土的联合控温优化解为:加热机温度和底部热源温度分别取16.5 ℃和15.6 ℃,以0.70 m/s的行进速度红外辐射2遍。本文方法可在掺砾相变黏土实际应用中为快速确定多种工况组合下的联合控温措施提供理论依据。

关键词: 掺砾黏土, 防冻控温, 相变材料, 通风加热, 红外辐射, 多目标优化

Abstract: Gravel-clay mixed with phase change material (GC-PCM) can prevent a core wall from freeze-thaw damage during winter construction. Consequently, it’s necessary to investigate how to efficiently improve the anti-freezing performance of this novel damming material at a low cost. This study develops an optimization method of multiple heating measures for temperature control of the core wall made of GC-PCM during winter construction. First, we formulate respectively two procedures for heating GC-PCM: air circulation for large-scale construction stage, and infrared irradiation for the stage after completion of GC-PCM filled into the core wall; then we establish a multi-objective optimization model for GC-PCM temperature control using these two procedures to minimize the total time and energy consumption. Moreover, detailed steps are given to solve the model using the Non-dominated Sorting Genetic Algorithm-Ⅱ (NSGA-Ⅱ), based on the improved Best/Middle/Worst Ideal Solution-Technique for Order Preference by Similarity to Ideal Solution (BMW-TOPSIS). Case study shows that for GC-PCM at an initial temperature of 4 ℃ under a multi-year average wind speed of 1.8 m/s, the optimal procedures can be adopted: Heating GC-PCM with a hot air blower temperature of 16.5 ℃ and a bottom heat source temperature of 15.6 ℃, and then implementing infrared heating at a moving speed of 0.70 m/s for 2 passes. The optimization method developed in this study lays a theoretical basis for fast selection of GC-PCM heating procedures under multiple condition combinations in practical dam construction.

Key words: gravel-clay, anti-freezing and temperature control, phase change material, air circulation heating, infrared irradiation, multi-objective optimization

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn