水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (6): 98-108.doi: 10.11660/slfdxb.20250610

• • 上一篇    下一篇

防渗帷幕灌浆数据的信息挖掘与利用

  

  • 出版日期:2025-06-25 发布日期:2025-06-25

Information mining and utilization based on grouting data of anti-seepage curtain

  • Online:2025-06-25 Published:2025-06-25

摘要: 随着新建抽水蓄能电站日渐增加,其上水库面临的地质问题也越来越复杂,对灌浆工程质量评价也提出了新的要求。由于地下工程的隐蔽性与复杂性,使得当前灌浆理论的发展难以满足指导灌浆工程实践的需求;人工智能技术虽然对处理此类模糊关系问题有明显优势,是大数据时代岩土工程领域发展的新趋势,但当前多以地质信息作为主要输入参数,受技术手段、工期、成本等条件限制,短期内难以打破样本量不足的瓶颈问题,而易于获取的海量帷幕灌浆数据却未被充分利用。本文以五岳抽水蓄能上水库的库岸防渗帷幕灌浆工程为研究对象,基于该工程三序共1104个灌浆孔累计4350个段次的灌浆数据,结合有限的地质资料,采用描述统计方法和空间分析方法,深入挖掘了灌浆数据本身所蕴含的信息,并对灌浆质量进行评价。结果表明:通过灌浆量的描述统计特征可基本识别新鲜基岩、一般裂隙岩体、裂隙密集带岩体以及灌浆质量不达标风险较大的岩体;灌浆量与地质条件存在一定的相关性,但因地质条件空间展布特征与裂隙填充物情况不同,所影响的灌浆次序也有所不同;仅凭首序孔(Ⅰ序孔)的灌浆情况,不能直接判断其所在区域的灌浆质量或灌浆效率;相比有限数量的检查孔数据,高密度分布的海量灌浆数据能够更全面地评价灌浆质量。充分挖掘灌浆数据蕴含的信息,可为海量灌浆数据的充分利用提供新思路、新方向,对推动灌浆工程智能化发展具有重要意义。

关键词: 抽水蓄能电站, 灌浆数据, 统计分析, 信息挖掘, 质量评价

Abstract: As increasingly pumped-storage power stations are built, designing the upper reservoir will encounter more complicated geological issues, and better evaluation on cement grouting projects is demanded. However, the invisibility and complexity of the underground project make the current grouting theory difficult to guide the grouting practice effectively. Artificial intelligence technology has significant advantages in addressing problems characterized by fuzzy constitutive relationships, bringing a new trend in geotechnical engineering field in big data era. But its main inputs are from geological datasets that are usually too small because of difficulties in practical collection limited severely by technical means, time constrains, and costs. Instead, the grouting data, which can be easily acquired in large amounts, is not being fully utilized. This paper presents a new grouting quality evaluation method based on descriptive statistical analysis and spatial statistical analysis on grouting data. It is based on the deep mining of information contained in the 4350 groups of grouting datasets collected from 1104 grout holes and a small amount of geological data from the Wuyue Pumped-Storage Power Station project. The results show that the descriptive statistical characteristics of grout consumption can be used to identify fresh bedrock, general fractured rock mass, densely fractured rock mass, and rock masses that features a higher risk of substandard grouting quality. The grout consumption is correlated with geological conditions to a certain extent, but their impact varies in different grouting sequences due to spatial variations in geological features and different fracture fillings. Neither grouting quality nor grouting efficiency can be evaluated only based on the consumption in the first order grouting. Compared to the limited data from inspection holes, massive grouting data in high density help evaluate grouting quality more comprehensively. Full mining of the information hidden in grouting data is a new approach to full utilization of massive grouting data, which would greatly promote the intelligent development of grouting engineering.

Key words: pumped-storage power station, grouting data, statistical analysis, information mining, quality evaluation

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn