水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (4): 59-71.doi: 10.11660/slfdxb.20250407

• • 上一篇    下一篇

代理模型驱动的隧洞支护方案多目标优化方法

  

  • 出版日期:2025-04-25 发布日期:2025-04-25

Multi-objective optimization method for tunnel support schemes driven by surrogate models

  • Online:2025-04-25 Published:2025-04-25

摘要: 针对目前传统数值模拟方法在支护方案优化中的不足,为了兼顾隧洞支护方案的安全性和经济性,同时适用于多种地质条件,并且提高传统数值模拟方法的计算效率,本文提出基于代理模型和NSGA-III的隧洞支护方案多目标优化方法。首先,以支护参数和围岩力学参数作为输入参数,隧洞围岩变形和围岩塑性区深度作为输出参数,建立类别型特征梯度提升(CatBoost)代理模型,构建输入参数与输出参数之间的非线性映射关系,同时采用蜣螂优化算法(DBO)优化CatBoost的超参数,实现隧洞围岩稳定的高效预测,并采用沙普利加和解释模型(SHAP)分析输入参数对输出参数影响的贡献度;其次,以隧洞安全和支护成本为目标函数,支护参数为设计变量,支护参数取值范围为约束条件构建隧洞支护方案多目标优化模型,进而将代理模型结合第三代非支配排序遗传算法(NSGA-III)进行支护方案多目标优化求解;最后,将本方法用于工程实例中,结果表明,III类围岩和IV类围岩支护优化方案与原方案相比隧洞拱顶变形分别降低了1.23%,9.78%;塑性区深度分别降低了8.98%,10.53%;支护成本分别降低了17.39%,4.94%,与实际工程监测结果相符。比起传统支护优化方法,本方法更加高效智能,能够为隧洞支护方案的优化设计提供决策支持。

关键词: 代理模型, 隧洞支护方案, 多目标优化, 类别型特征梯度提升(CatBoost), 沙普利加和解释模型(SHAP), 第三代非支配排序遗传算法(NSGA-III)

Abstract: To overcome the shortcomings of traditional numerical simulation methods in optimizing tunnel support schemes, this paper presents a new multi-objective optimization method based on surrogate models and NSGA-III, to balance the schemes’ safety and economy under various geological conditions and to improve the computational efficiency of the traditional methods. First, we construct a categorical feature gradient boosting (CatBoost) surrogate model that is equipped with the support parameters of surrounding rock and its mechanical parameters as input parameters, and its deformation and plastic zones depth as output parameters. A nonlinear mapping relationship between these input and output parameters is worked out. We optimize the hyperparameters of CatBoost using the dung beetle optimizer (DBO) thereby achieving efficient prediction of tunnel surrounding rock stability, and evaluate the contribution of these parameters using the Shapley Additive exPlanations (SHAP) model. Then, a multi-objective optimization model for the support schemes is constructed with tunnel safety and support cost as objective functions, the support parameters as design variables, and the ranges of support parameter values as constraints, so that the surrogate model is combined with the Non-dominated Sorting Genetic Algorithm III (NSGA-III) to solve the multi-objective optimization problem of support schemes. Finally, this method is applied in real project cases. The results indicate that compared with the original scheme for surrounding rocks Class III and Class IV, the optimized support schemes reduce tunnel vault deformation by 1.23% and 9.78% respectively, decrease the depth of plastic zones by 8.98% and 10.53% respectively, and lower support cost by 17.39% and 4.94% respectively, which are all verified by the on-site monitoring results. Our new method is more efficient and intelligent than traditional support optimization methods, and helps design better tunnel support schemes.

Key words: surrogate model, tunnel support scheme, multi-objective optimization, categorical boosting (CatBoost), Shapley additive explanations model (SHAP), non-dominated sorting genetic algorithm III (NSGA-III)

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn