水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (12): 74-83.doi: 10.11660/slfdxb.20251207

• • 上一篇    下一篇

多传感器融合下地下厂房洞室群定位与建图研究

  

  • 出版日期:2025-12-25 发布日期:2025-12-25

Multi-sensor fusion-based localization and mapping for underground powerhouse cavern groups

  • Online:2025-12-25 Published:2025-12-25

摘要: 本文针对地下厂房洞室群无人化施工中因光照不足、粉尘干扰及通信受限导致的定位精度低、稳定性差问题,提出LiDAR与IMU融合的定位与建图方法。通过构建多传感器融合框架,采用ESKF算法实现LiDAR点云数据与IMU运动信息的紧耦合:利用LiDAR进行三维空间特征提取以应对弱光环境,结合IMU六自由度运动参数补偿设备快速移动或遮挡时的数据缺失,同步集成关键帧匹配、位姿优化与回环检测机制并提升系统鲁棒性。仿真实验基于M2DGR数据集验证表明,多传感器融合使场景覆盖率提升40%,平均定位误差降至16 cm,较单一LiDAR方法精度显著提高。实际工程应用表明,该方法在地下洞室群复杂环境中能有效克服粉尘干扰和动态障碍影响,定位精度与建图稳定性满足施工需求。

关键词: 地下洞室群, 高精度定位, 多传感器融合, 激光惯导里程计, 误差状态卡尔曼滤波

Abstract: This study addresses the challenges of low positioning accuracy and poor stability caused by insufficient illumination, dust interference, and communication limitations in the unmanned construction of underground powerhouse cavern groups. We develop a LiDAR-IMU fused localization and mapping method through constructing a multi-sensor fusion framework. A tightly-coupled approach is implemented using the ESKF algorithm to integrate LiDAR point cloud data with IMU motion parameters. Specifically, this system leverages LiDAR for 3D spatial feature extraction to overcome low-light constraints, while utilizing six-degree-of-freedom IMU motion parameters to compensate for data loss during rapid equipment movement or occlusion. The framework is further enhanced through synchronous integration of keyframe matching, video pose optimization, and loop closure detection mechanism to improve system robustness. Simulation tests conducted on the M2DGR dataset demonstrate that this LiDAR-IMU fusion method increases scene coverage by 40% and reduces the average positioning error down to 16 cm, showing its significant accuracy improvement over single LiDAR solutions. Practical engineering applications confirm its effectiveness in overcoming dust interference and dynamic obstacles in complex underground cavern environments, and demonstrate it has achieved a positioning accuracy and mapping stability meeting the construction requirements.

Key words: underground cavern group, high-accuracy positioning, multi-sensor fusion, LiDAR-inertial odometry, error state Kalman filter

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn