水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (10): 73-84.doi: 10.11660/slfdxb.20251007

• • 上一篇    下一篇

深度与迁移学习驱动的水下图像增强与裂缝量化研究

  

  • 出版日期:2025-10-25 发布日期:2025-10-25

Underwater image enhancement and crack quantification driven by deep learning and transfer learning

  • Online:2025-10-25 Published:2025-10-25

摘要: 获取大坝高质量水下裂缝图像并实现对其高效识别量化,对提升水下巡检效能具有重要意义。为解决水下图像质量退化问题及实现裂缝识别量化,本文提出了一种基于深度学习与迁移学习的水下图像增强与裂缝量化方法。通过搭建水下成像平台采集数据,利用公开的海洋图像数据集作为水下图像的先验知识,构建条件扩散模型实现多源跨域图像增强;结合YOLOv12网络进行裂缝检测,采用形态学操作实现特征量化。实验结果表明,本文所提的图像增强方法在视觉质量、评价指标及像素分配上显著优于传统方法,联合检测模型可提升裂缝检测精度并降低漏检率,采用的量化方法有效提取裂缝特征参数,构建了“增强-检测-量化”闭环框架,能够为水下智能巡检提供有效技术方案。

关键词: 水下结构, 水下裂缝, 图像增强, 裂缝量化, 扩散模型

Abstract: Acquiring high-quality underwater crack images and achieving efficient identification and quantification are crucial for enhancing dam inspection efficiency. To address the challenges associated with underwater image degradation and crack quantification, this study develops a deep learning and transfer learning-based method for underwater image enhancement and crack analysis. We construct a new platform for underwater imaging and data acquisition, and develop a conditional diffusion model using public marine image datasets as prior knowledge for cross-domain multi-source enhancement. Crack detection is performed using YOLOv12, followed by morphological operations for feature quantification. Experimental results demonstrate our method significantly outperforms conventional approaches in terms of visual quality, no-reference metrics, and pixel allocation. The integrated detection model improves accuracy while reducing missed detections, and the quantification method extracts crack parameters effectively. The enhancement-identification-quantification closed-loop framework developed in this study is an effective technical solution to intelligent underwater inspections.

Key words: underwater structures, underwater cracks, image enhancement, crack quantification, diffusion model

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn