水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (10): 59-72.doi: 10.11660/slfdxb.20251006

• • 上一篇    下一篇

高噪声环境下混凝土坝双层钢筋智能感知与识别方法研究

  

  • 出版日期:2025-10-25 发布日期:2025-10-25

Study on intelligent perception and recognition method for dual-layer reinforcement in concrete dams under high-noise conditions

  • Online:2025-10-25 Published:2025-10-25

摘要: 混凝土坝是建造大型水利工程的常用坝型,在施工过程中对钢筋网结构进行检测是进行混凝土坝施工质量控制及智能化装备应用的重要基础工作。然而,现有研究难以实现高噪声环境条件下多层钢筋的高精度感知与识别。针对此问题,本研究提出了一种基于三维激光雷达的钢筋网结构高精度智能感知与识别方法。首先,提出基于SOR-DBSCAN-张量投票的多阶段数据降噪与预处理方法,以提高原始数据的质量及可用性;其次,采用MLESAC算法及加权最小二乘法进行递进式钢筋网精细拟合;最后,针对由于遮挡导致的数据缺失问题,提出了一种基于二维投影MLESAC的双层钢筋网平面拟合方法,并结合点云密度图确定其空间位置,从而有效利用了残缺点云信息。以土溪口水利工程为依托进行相关实验,结果表明所提出的方法能够很好地利用激光雷达设备,在高噪声数据的基础上完成双层钢筋网结构的精细化拟合与重构,从而能够为施工现场质量控制及智能化装备应用提供有力支持。

关键词: 水利工程, 激光雷达, 钢筋结构检测, 高噪声数据, 精细化拟合

Abstract: Concrete dams are a dam type commonly used in large-scale hydraulic engineering projects; the detection of their reinforcement mesh configurations during construction is fundamental to quality control and the application of intelligent equipment. However, for multi-layer reinforcement in high-noise environments, previous studies have struggled to achieve high-accuracy perception and recognition. This study presents a new intelligent perception and recognition method of high accuracy for such reinforcement mesh structures utilizing 3D LiDAR technology. First, we develop a multi-stage data denoising and preprocessing method based on SOR-DBSCAN-Tensor Voting to enhance the quality and usability of raw data. Then, we adopt the MLESAC algorithm and weighted least squares to formulate a progressive procedure for refined fitting of reinforcement meshes. Finally, a new method for plane fitting of dual-layer reinforcement meshes based on 2D projection MLESAC is implemented to tackle data loss caused by occlusion. And, by integrating this method with the point cloud density maps, the spatial position of the mesh is determined, realizing an effective use of incomplete point cloud data. In a case study of the Tuxikou reservoir, numerical experiments demonstrate our method is effective in leveraging the LiDAR equipment and has achieved refined fitting and reconstruction of the dual-layer reinforcement mesh structures under high-noise conditions, useful for construction site quality control and intelligent equipment application.

Key words: hydraulic engineering, LiDAR, reinforcement structure detection, high-noise data, fine-scale fitting

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn