水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (10): 48-58.doi: 10.11660/slfdxb.20251005

• • 上一篇    下一篇

改进的YOLOv8n模型在大坝裂缝检测中的应用研究

  

  • 出版日期:2025-10-25 发布日期:2025-10-25

Study on application of improved YOLOv8n model in dam crack detection

  • Online:2025-10-25 Published:2025-10-25

摘要: 针对大坝裂缝检测中监控图像质量低、有效样本稀缺及复杂背景干扰导致的误检问题,本研究提出一种基于改进YOLOv8n的检测方法。通过193张工程实拍背景复杂的裂缝图像对模型进行训练,并通过修改马赛克数据增强机制,针对误检目标进行负样本训练。实验结果显示:小样本训练下YOLOv8n模型mAP达到89.2%,满足一般工程应用;经负样本训练后模型mAP达到92.5%,误检率下降10.1%,显著解决复杂背景下的误检问题。研究表明YOLOv8n模型能够胜任图像质量较低的大坝监控图像,且负样本训练策略对解决模型误检问题有显著效果,为解决水利工程裂缝识别问题提供了新的思路,具有较高的工程应用价值。

关键词: 水利工程, YOLOv8, 负样本训练, 大坝裂缝检测, 水利工程安全监测

Abstract: This study presents an improved YOLOv8n-based detection method to address the issue of false detections of dam cracks that is caused by low-quality surveillance images, limited effective samples, and interference from complex backgrounds. This model is trained using a dataset comprising 193 real-world crack images featuring complex engineering backgrounds, and enhanced by modifying the mosaic data augmentation mechanism and incorporating negative sample training targeted at the objects that were often falsely detected. Numerical experiments demonstrate that under small-sample training conditions, the YOLOv8n model achieves a mean Average Precision (mAP) of 89.2%, meeting the requirements of general engineering applications. After negative sample training, the mAP increases to 92.5%, and the false detection rate is reduced by 10.1%, providing an effective solution to the false detection problem in complex background scenarios. Our findings indicate that the YOLOv8n model is well-suited for dam surveillance images of suboptimal quality, and that the negative sample training strategy significantly improves detection accuracy. This approach offers a novel solution to crack identification in hydraulic projects, practically significant for engineering applications.

Key words: hydro-engineering, YOLOv8, negative sample training, dam crack detection, water conservancy project safety monitoring

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn