水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (8): 105-118.doi: 10.11660/slfdxb.20250810

• • 上一篇    下一篇

基于优化统计模型的混凝土坝变形异常值自适应识别

  

  • 出版日期:2025-08-25 发布日期:2025-08-25

Adaptive identification of concrete dam deformation outliers based on optimized statistical model

  • Online:2025-08-25 Published:2025-08-25

摘要: 利用大坝变形监测数据构建安全监控模型,是定量分析大坝变形性态的重要方法。然而,大多现有的变形监控模型在影响因子优选和抗异常值干扰等方面存在显著不足。为此,本文提出了一种基于优化统计模型的混凝土坝变形异常值自适应识别方法,该方法能够在回归建模的同时识别异常值,从而避免数据清洗过程中因误删异常值而导致的监控模型失真。首先,引入贝叶斯模型选择技术,对影响混凝土坝变形的冗余因子进行约简,进而优选出统计建模过程中具有重要影响的解释变量;随后,采用最小截平方和估计对变形监测数据进行稳健回归分析,构建能够自适应识别不同异常类型的混凝土坝变形监控模型;最后,设计实现数据序列中各类异常值的可视化展示,以直观呈现异常位置及其潜在影响。工程应用实例表明,所提方法能够有效识别混凝土坝变形关键影响因子,自适应地克服不同异常类型对回归分析的干扰,从而使回归的显著性增强,拟合优度和预测精度提高,在监测数据异常检测及大坝安全性态的定量分析中具有良好的适用性。

关键词: 安全监测, 混凝土坝, 统计模型, 异常值识别, 最小截平方和估计, 贝叶斯模型选择

Abstract: The development of a safety monitoring model utilizing dam deformation monitoring data is a crucial method for the quantitative analysis of deformation patterns, but previous deformation monitoring models often suffer from severe shortcomings in the selection of influencing factors and resisting outlier interference. This study develops an adaptive identification method for deformation outliers in concrete dams based on optimized statistical models. This method not only identifies outliers during regression modeling, but also prevents the monitoring model from distortion caused by erroneous data cleansing. First, we use a Bayesian model selection technique to reduce redundancy among the deformation’s influencing factors, helping identify significant explanatory variables in the statistical modeling phase. Then, we use the least trimmed squares estimation for robust regression analysis of the deformation monitoring data, and construct a monitoring model that adaptively identifies various types of anomalies in the deformation data series. Finally, we design and implement a visualization strategy for different types of anomalies to generate an intuitive representation of their locations and potential impacts. A case study demonstrates that this new method identifies key deformation factors effectively, and adaptively reduces the interference of different anomaly types to regression analysis. It leads to improvement on the significance of regression results and the goodness of fit and prediction accuracy, manifesting satisfactory applicability for detecting anomalies in monitoring data and conducting quantitative analyses of dam safety behaviors.

Key words: safety monitoring, concrete dams, statistical models, outlier detection, least trimmed squares, Bayesian model selection

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn