水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (8): 119-128.doi: 10.11660/slfdxb.20250811

• • 上一篇    

双重注意力机制下的水电工程施工安全隐患自动辨识方法

  

  • 出版日期:2025-08-25 发布日期:2025-08-25

Automatic identification method of safety hazards in hydropower construction based on dual attention mechanism

  • Online:2025-08-25 Published:2025-08-25

摘要: 为实时精准识别水电工程施工现场中存在的安全隐患,融合通道注意力机制与空间注意力机制,改进YOLOv8算法,提出一种双重注意力机制驱动的水电工程施工安全隐患自动辨识方法。首先,基于YOLOv8网络框架,构建通道注意力机制,自适应强化关键特征,动态表达隐患区域图像特征,并抑制背景噪声影响。其次,搭建空间注意力机制,通过加权重要区域、减少背景干扰,优化特征融合,自适应调整关注度,增强局部细节捕捉和定位精度,提升多尺度隐患检测能力,增强模型的空间特征表示能力。最后,结合实际工程检验模型的准确性与可靠性。结果表明,该方法通过注意力机制能很好应对水电工程施工现场的干扰,施工安全隐患识别精度高达86.2%,优于已有隐患识别模型,可为水电工程施工安全隐患动态管理和精准防控提供技术支撑。

关键词: 水电工程, 施工安全, 隐患辨识, 注意力机制, 深度学习

Abstract: To accurately identify the safety hazards at hydropower construction sites in real time, this paper combines the channel attention mechanism and spatial attention mechanism, improves and applies the YOLOv8 algorithm, and develops an automatic identification method of safety hazards in hydropower construction based on the dual attention mechanism. First, based on the YOLOv8 network framework, we construct a channel attention mechanism to highlight key features adaptively, strengthen dynamically the expression of image features of hidden danger areas, and suppress the influence of background noise. Then, a spatial attention mechanism is built that helps weight important regions, reduce background interference, and optimize feature fusion. It allows to adjust attention adaptively, enhance local detail capture and the positioning accuracy, improve the multi-scale target detection ability, and enhance the spatial feature representation ability of the model. Finally, we verify the accuracy and reliability of the model through a case study of an ongoing construction project. The results show that the proposed method identifies the hazards effectively against the interference in the construction site through the attention mechanism, and achieves an accuracy rate of up to 86.2%, better than previous identification models, thereby improving the dynamic management, prevention and control of hydropower construction safety hazards.

Key words: hydropower engineering, construction safety, hazards identification, attention mechanism, deep learning

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn