水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (8): 20-30.doi: 10.11660/slfdxb.20250803

• • 上一篇    下一篇

融合自适应特征与优化KELM的抽蓄机组振动预测

  

  • 出版日期:2025-08-25 发布日期:2025-08-25

Vibration predictions of pumped storage units based on adaptive feature and optimized KELM

  • Online:2025-08-25 Published:2025-08-25

摘要: 为了减小振动信号的非线性与非平稳特性对振动预测精度的影响,本文提出了一种融合自适应特征与优化核极限学习机(KELM)的抽蓄机组振动预测方法。首先,利用改进的自适应噪声完全集成经验模态分解(ICEEMDAN)对振动信号进行分解,获得不同频率成分的本征模态分量;其次,采用自编码器(AE)对所得分量进行自适应特征提取,动态捕捉关键特征;然后,建立KELM预测模型分别对各分量进行预测,并提出差分进化—改进哈里斯鹰算法(DEIHHO)对KELM的正则化参数与核参数进行优化,进而叠加各分量预测结果得到机组振动的最终预测结果;最后,通过实例验证表明,所提方法具有较好的预测性能,能够有效提高抽水蓄能机组振动预测的准确性。

关键词: 振动预测, 自适应特征, 核极限学习机, 改进的自适应噪声完全集成经验模态分解, 自编码器, 差分进化–改进哈里斯鹰算法

Abstract: This paper presents a vibration prediction method of pumped storage units based on adaptive features and an optimized kernel extreme learning machine (KELM) to reduce the impact of the nonlinear, non-stationary characteristics of vibration signals on the accuracy of vibration predictions. First, we use improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) to decompose a vibration signal and generate the intrinsic mode components of different frequencies. And, an autoencoder is used to extract the features of these components adaptively and capture their key features dynamically. Then, a KELM prediction model is developed to predict each component separately, using a modified DEIHHO algorithm to optimize its regularization parameter and kernel parameter. Finally, the final prediction result of unit vibration is obtained by superadding the predictions of all the components. Comparison with previous experimental data shows our new method is better in vibration prediction of pumped storage units and improves the accuracy effectively.

Key words: vibration prediction, adaptive feature, kernel extreme learning machine, improved complete ensemble empirical mode decomposition with adaptive noise, autoencoder, differential evolution-improved Harris hawk optimization

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn