水力发电学报
  2025年06月27日 星期五           首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2022, Vol. 41 ›› Issue (4): 62-70.doi: 10.11660/slfdxb.20220407

• • 上一篇    下一篇

入库径流过程预报误差多维随机模拟模型

  

  • 出版日期:2022-04-25 发布日期:2022-04-25

Multi-dimensional stochastic simulation model of forecast errors of reservoir inflow process

  • Online:2022-04-25 Published:2022-04-25

摘要: 包含多个预见期的入库径流过程预报误差的随机模拟随着维度增加而难度增大。为了更加精确快速地分析和得到入库径流过程预报误差的变化规律,本文利用变分自编码器(VAE)方法耦合神经网络和低维隐变量的模拟生成复杂高维数据的特性,建立了基于VAE的入库径流过程预报误差随机模拟模型。以锦屏一级水电站的入库径流过程预报误差模拟为例,将以上模型与改进的Gibbs方法的模拟效果进行对比。结果表明,本文模型所得误差序列的均值、标准差、峰度系数等特征统计量更贴近于实际误差序列,且程序运行时间相比改进的Gibbs方法减少了69% ~ 94%,为考虑入库径流预报不确定性的水电站水库调度提供了更为丰富的参考信息。

关键词: 入库径流, 预报误差, 多维随机模拟, 变分自编码器, 改进的Gibbs方法, 锦屏一级水电站水库

Abstract: Stochastic simulations of the errors in reservoir inflow process forecasts with multiple forecast periods become more difficult as the number of dimensions increases. To examine the variation trends of the errors accurately and quickly, we first generate the characteristics of complex high-dimensional data through numerical simulations using the neural network coupled with low-dimensional hidden variables and the Variational AutoEncoders (VAE) method. Then, we develop a stochastic simulation model of the forecast errors of reservoir inflow process based on VAE. This model is compared with the improved Gibbs method in a case study of the Jinping Ⅰ hydropower station. The results show that it gives better agreement of the mean, standard deviation, and variation coefficient with the real error sequence, and its computational time reduces by 69% to 94% compared with the improved Gibbs method. These results provide more information for hydropower station regulation considering uncertainty in reservoir inflow forecast.

Key words: reservoir inflow, forecast errors, multi-dimensional stochastic simulation, Variational AutoEncoders, improved Gibbs method, Jinping I hydropower station

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn