水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (4): 42-49.doi: 10.11660/slfdxb.20250405

• • 上一篇    下一篇

水电工程施工安全隐患类别辅助校正方法

  

  • 出版日期:2025-04-25 发布日期:2025-04-25

Auxiliary correction methods for categories of potential safety hazards in hydropower project construction

  • Online:2025-04-25 Published:2025-04-25

摘要: 为加强水电工程施工安全隐患排查治理,施工人员可利用随手拍工具及时上报安全隐患,但是隐患类别判定准确性存在主观依赖,人工校正耗时耗力。为避免水电工程施工安全隐患管理混淆,提出水电工程施工安全随手拍的隐患类别辅助校正NRBO-CNN-BiLSTM方法。首先,对安全隐患数据进行分词、预处理,将其转化为词向量并进行归一化处理。其次,引入注意力机制增强特征表示能力,构建以卷积神经网络和双向长短期记忆网络为主干的安全隐患分类模型。最后,设计牛顿-拉夫逊优化算法,训练最佳模型参数。通过案例结果表明:18类隐患类别分类结果P值69.19%,主要原因在部分隐患类别出现频率较低;选取6类数量均衡的隐患类别进行实验,NRBO-CNN-BiLSTM模型P值上达到了94.62%,R值为94.58%,F1值为94.59%,各项数据均优于其他分类模型,反映该模型可为隐患类别校正提供辅助。

关键词: 水电工程, 随手拍, 施工安全, 安全隐患, 文本分类

Abstract: To enhance the investigation and management of potential hazards in hydropower construction, workers can use mobile reporting to announce safety hazards promptly. However, hazard classification and its accuracy are often subjective, and manual correction is time-consuming and labor-intensive. To mitigate confusion in hazard management during construction, this paper describes a NRBO-CNN-BiLSTM method for auxiliary correction of the mobile phone-reported hazard categories. First, safety hazard data are tokenized, preprocessed, and converted into word vectors, followed by normalization. Then, we apply an attention mechanism to enhance the feature representation capability, and construct a safety hazard classification model using convolutional neural networks and bidirectional long-short-term memory networks. Finally, we work out a Newton-Raphson optimization algorithm to train the model for optimal parameters selection. Case studies demonstrate the probability is 69.2% for the classification of 18 types of hazards. The main reason lies in a relatively low frequency of certain hidden danger categories. In the tests of 6 hazard categories with balanced datasets, our new model achieves a classification probability of 94.6%, a recall value of 94.6%, and an F1 score of 94.6%. The accuracies of these indexes are superior to those of alternative classification models, indicating this correction model is effective and better.

Key words: hydropower project, snapshoot, construction safety, potential safety hazards, text classification

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn