水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (11): 105-114.doi: 10.11660/slfdxb.20211110

• • 上一篇    下一篇

基于集成GAN的边坡岩体结构面多参数模拟方法

  

  • 出版日期:2021-11-25 发布日期:2021-11-25

Simulating multi-dimensional fracture parameters of rock mass slopes using ensemble generative adversarial networks

  • Online:2021-11-25 Published:2021-11-25

摘要: 结构面的随机特征是水工边坡岩体稳定性研究的关键,目前一般采用单变量或双变量的概率模型研究,难以实现多参数的联合分析。基于生成对抗神经网络(GAN)和集成学习策略,提出了一种可用于结构面多维参数联合模拟的E-WGAN算法。相比于传统方法,该算法能够准确建立参数间的相关关系,实现岩体结构面形态的精确描述和模拟。实验对一组包含三个参数(迹长、倾向、开度)的结构面进行分析,证实了传统方法的局限性;而E-WGAN算法可同时对多维参数联合建模,从而还原结构面的真实分布特征。通过建立离散裂隙网络表明,利用该算法模拟的数据生成的迹线图对出露面的还原度更高。此外,该算法可被推广至更高维度地质参数分析,应用前景广阔。

关键词: 边坡岩体, 生成对抗神经网络, 多维参数, 随机离散结构面网络, 迹线图

Abstract: Random characteristic rock fractures are vital to stability analysis of the rock mass on slope in hydraulic engineering, but previous methods are based on a univariate or bivariate statistical models and neglect the dependencies between different fracture parameters. This paper presents a new artificial neural network method for joint simulations of the multi-dimensional parameters of such rock fractures, namely ensemble wasserstein generative adversarial network (E-WGAN) that is based on the generative adversarial networks and ensemble learning. Compared with the traditional methods, this method improves the description of the multi-dimensional distribution characteristics of the fractures. Through examining a set of fracture data for the rock mass cases of three parameters (trace length, strike, and aperture), we show it can accurately model the three variates and their relationships that the traditional methods fail to express. A comparison of the discrete fracture networks generated from simulation samples shows that the trace maps simulated using E-WGAN samples are closer to the real trace maps. Besides, this algorithm is also applicable to higher dimension cases in geological analysis and has a broad prospect of application in rock mass analysis.

Key words: slope rock mass, generative adversarial network, multi-dimensional parameter, discrete fracture network, trace map

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn