水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (3): 64-75.doi: 10.11660/slfdxb.20210306

• • 上一篇    下一篇

基于EnKF算法的大型河网水量数据同化研究

  

  • 出版日期:2021-03-25 发布日期:2021-03-25

Influence of field observation on effectiveness of data assimilation using EnKF algorithm for large-scale river network

  • Online:2021-03-25 Published:2021-03-25

摘要: 大型河网非恒定模拟计算仍是当前难点,现实环境的不确定性使传统模拟方法精度难以有效提高。数据同化方法融合数据和观测,是提高实际问题模拟和预测精度的重要手段。本文以太湖流域河网为对象,引入集合卡尔曼滤波方法,构建了太湖流域河网水量数据同化模型,探究了水位观测数据同化对河网水量预测精度的影响,并将模型运用于太湖流域河网洪水预报。结果显示:太湖流域各水利分区水量相对独立,为降低模拟误差,需在各个片区引入观测数据。通过同化各水利分区内2 ~ 3个站点每隔1-2天的观测数据,可使模拟误差降低约40%。太湖领域的预报水位与实测水位基本一致,宜兴、丹阳、常州等站的最高洪水位预报误差不超过0.02 m。

关键词: 流域河网, 水动力模型, 集合卡尔曼滤波, 数据同化

Abstract: Accurate simulation of large-scale river networks is still a difficult issue at present, and uncertainty in real environments is responsible for the inefficiency in improving the accuracy of traditional simulation methods. Data assimilation, which fuses data and observations, is an important method to improve the accuracy of practical predictions. This paper develops an assimilation model integrating the Taihu basin river network model and ensemble Kalman filtering algorithm to explore how field observations impact the assimilation effectiveness. The results show the water conservancy zones in this basin are relatively independent, thereby requiring a certain amount of observations in each zone to achieve effective assimilation results. And for each zone, two or three observation points with a sampling interval of 1-2 days will be enough to reduce the simulation errors by about 40% in comparison to the traditional method. The predicted stages of Taihu basin agree with observations with the maximum prediction error of flood stage no more than 0.02 m at stations of Yixing, Danyang, and Changzhou.

Key words: basin river network, hydrodynamic model, ensemble Kalman filter, data assimilation

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn