水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (12): 52-64.doi: 10.11660/slfdxb.20251205

• • 上一篇    下一篇

多目标灰狼优化算法在水电机组负荷分配中的应用研究

  

  • 出版日期:2025-12-25 发布日期:2025-12-25

Application of multi-objective grey wolf optimization algorithm to load dispatch of hydropower units

  • Online:2025-12-25 Published:2025-12-25

摘要: 水电机组负荷分配优化是提高水电站运行效率与经济性的关键问题,传统单目标优化方法难以兼顾经济性与机组运行安全性。本文构建以耗水量最小化和穿越振动区次数最少为目标的优化模型,将多目标灰狼优化算法(MOGWO)应用于水电机组负荷分配优化问题中。仿真实验数据取自甘肃盐锅峡水电站,相较于经典多目标优化算法基于非支配性排序遗传算法(NSGA-II)和基于分解的协作进化框架算法(MOEA/D)以及多目标粒子群算法(MOPSO),MOGWO算法在多目标优化问题上展现出更优的综合性能。仿真结果表明,该算法可有效降低水电机组运行耗水率9.7%,并能显著减少机组振动区穿越频率。研究结果对水电机组多目标优化问题提供了高效稳定的解决方案。

关键词: 水电机组, 负荷分配, 振动区, Pareto最优, 灰狼优化, 多目标优化

Abstract: Unit load dispatch optimization for hydropower stations is critical to improving their operational efficiency and economic performance. Traditional single-objective optimization methods have struggled in the balance between economic performance and operational safety. This paper constructs an optimization model that has two objectives-to minimize water consumption of a hydropower station and reduce the number of times its units cross into the vibration zone. The Multi-Objective Grey Wolf Optimization (MOGWO) algorithm is beneficial for optimizing the load dispatch of the units, based on the in-situ data collected from the Yanguoxia hydropower station. Generally, the MOGWO algorithm demonstrates superior overall performance in solving a multi-objective optimization problem, compared to classical multi-objective optimization algorithms-such as the Non-dominated Sorting Genetic Algorithm II (NSGA-II), Decomposition-based Multi-objective Evolutionary Algorithm (MOEA/D), and Multi-Objective Particle Swarm Optimization (MOPSO). Simulation results indicate that MOGWO effectively reduces the units’ water consumption rate by 9.7%, and significantly lowers the vibration zone-crossing frequency. The efficient and stable solution proposed in this paper contributes to the effective resolution of multi-objective optimization problems in hydropower unit operation.

Key words: hydroelectric generating units, load allocation, vibration zone, Pareto optimality, grey wolf optimizer, multi-objective optimization

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn