水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (9): 114-124.doi: 10.11660/slfdxb.20250910

• • 上一篇    下一篇

融合多尺度特征与注意力机制的混凝土裂缝语义分割模型

  

  • 出版日期:2025-09-25 发布日期:2025-09-25

Semantic segmentation model for concrete cracks integrating multi-scale features and attention mechanisms

  • Online:2025-09-25 Published:2025-09-25

摘要: 裂缝作为混凝土坝最常见的病害之一,其存在会对坝体结构的整体性与耐久性产生削弱作用。因此,裂缝检测是混凝土坝运维管理中的重要任务。针对传统图像处理技术在检测裂缝时人工干预多、泛化能力不足的问题,本文提出了一种融合多尺度特征与注意力机制的大坝裂缝语义分割模型。该模型选取ResNet-50作为主干网络,并结合路径聚合网络复用浅层特征,同时引入通道注意力和位置注意力机制,以强化模型对关键特征的捕捉能力,从而有效提升分割精度。随后,根据模型语义分割所得结果,利用数字图像技术对裂缝的面积、长度、平均宽度以及最大宽度等几何特征进行量化表征。在自制裂缝图像数据集上的测试结果显示,所提模型的裂缝分割交并比达到82.02%,F1分数为90.12%,且几何特征量化结果与真实值具有较高的拟合度,符合精度要求。这表明该方法在混凝土坝裂缝检测和几何特征量化中具备良好的应用潜力。

关键词: 混凝土坝运维, 裂缝分割, 几何特征量化, 深度学习, 注意力机制

Abstract: Cracking, as one of the most common defects in concrete dams, weakens the integrity and durability of dam structures; crack detection has been a crucial task in the operation and maintenance management of concrete dams. Aimed at the drawbacks of traditional image-processing techniques in crack detection-such as substantial manual intervention and limited generalization ability, this paper presents a semantic segmentation model of dam cracks that incorporates multi-scale features and attention mechanisms. This model uses ResNet-50 as its backbone network for integrating the Path Aggregation Network to recycle shallow features, and makes use of the mechanisms of channel attention and spatial attention. These mechanisms enhance the model's ability to identify critical features, thus effectively improving its segmentation accuracy. Then, based on its semantic segmentation results, the digital image technology is adopted to quantify the geometric characteristics of cracks, including area, length, average width, and maximum width. Tests on a crack image dataset show this new model achieves a crack segmentation Intersection over Union of 82.02% and an F1 score of 90.12%; Quantification results of geometric characteristics exhibit an excellent agreement with the real values and a satisfactory accuracy. Thus, our method demonstrates significant potential for application in crack detection and geometric characteristics quantification for concrete dams.

Key words: concrete dam operation and maintenance, crack segmentation, geometric feature quantification, deep learning, attention mechanism

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn