水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (7): 77-86.doi: 10.11660/slfdxb.20250706

• • 上一篇    下一篇

土石坝时空融合多测点预测模型

  

  • 出版日期:2025-07-25 发布日期:2025-07-25

Multi-point prediction model with spatial-temporal fusion for embankment dams

  • Online:2025-07-25 Published:2025-07-25

摘要: 表征大坝服役性态变化的监测效应量,其变化客观反映了大坝的工作性态变化,因此大坝安全监测和性态预测对大坝安全运行和风险管控意义重大。现有方法主要聚焦于单测点时序建模,即对单一位置点建立预测模型,在空间关联特征建模和环境驱动机制解析方面存在优化空间。本文从多测点监测效应量构成的多维时空分布场(效应量场)的时空特点出发,考虑多测点在时间维度上的发展相似性和空间维度的分布差异性,构建融合特征提取机制的时空融合多测点预测模型。该模型通过并行分支网络,利用GRU捕捉环境驱动下的因果时序特征,结合CNN网络挖掘多测点空间分布规律,并通过全连接层实现多维信息的特征融合,实现对土石坝渗流多测点的同步高精度预测。基于怀柔水库近三十年监测数据的实例研究表明,所提模型在维持计算可行性的同时,有效平衡了时空特征的表征能力,其多测点同步预测精度较传统方法提升显著,为土石坝全断面性态演化分析提供了新的思路。

关键词: 土石坝, 性态预测, 时空融合, 多测点, 预测模型

Abstract: The monitoring effect value is an objective index that characterizes changes in the service performance of a dam and reflects changes in its working behavior. For an embankment dam, safety monitoring and behavior prediction by using this index are of great significance for the operation and risk management and control. Most of the previous methods focused on time-series modeling for a single measuring point, that is, developing a prediction model for a single location, and left room for improving the modeling of spatial correlation characteristics and the analysis of environmental driving mechanisms. This paper constructs a spatiotemporal fusion multi-measuring-point prediction model with a feature extraction mechanism integrated, starting from the characteristics of a multi-dimensional spatiotemporal distribution field, i.e., effect field, composed of the multi-point monitoring effect quantities, and considering time development similarity at these points and differences in spatial distributions. Through a parallel branch network, this model uses the Gated Recurrent Unit (GRU) to capture causal time-series characteristics driven by the environment, and combines with the Convolutional Neural Network (CNN) to mine spatial distribution patterns at the multiple measuring points. It can achieve the collaborative feature fusion of multi-dimensional information by introducing an adaptive feature fusion strategy, so that it succeeds in synchronous and high-precision prediction of the seepage flows in an embankment dam at multiple measuring points. A case study of the Huairou reservoir seepage, based on the monitoring data nearly 30 years long, shows our new model effectively balances its capability of representing spatiotemporal feature while maintaining computational feasibility. It has a synchronous multi-point prediction accuracy significantly higher than traditional methods, and advances behavior evolution analysis for the entire dam section.

Key words: embankment dam, behavior prediction, spatial-temporal fusion, multiple points, prediction model

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn