水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (7): 36-46.doi: 10.11660/slfdxb.20250702

• • 上一篇    下一篇

混凝土坝变形规律智能识别与异常检测方法研究

  

  • 出版日期:2025-07-25 发布日期:2025-07-09

Study on intelligent recognition of deformation patterns and anomaly detection method of concrete dams

  • Online:2025-07-25 Published:2025-07-09

摘要: 混凝土坝运行过程中极有可能受到突发事件、自然灾害以及人为管理变化等各种不确定性因素的影响,导致坝体常规变形规律出现一定幅度的改变。如何准确识别大坝运行规律的变化,对提升混凝土预警预报水平具有重要意义。对此,本研究使用空间聚类方法对混凝土坝结构内部不同区域之间的相似性测点进行分类;采用模糊聚类(Gath-Geva)算法划分阶段,允许数据点依据隶属度属于多个时间段,以测量分段同质性,并且检测多变量时间序列隐藏结构的变化;利用基于聚类相容性准则的模糊决策算法,确定所需的分段数以及主成分分析(PCA)确定主成分数,进一步提高了Gath-Geva算法的精度。以拉西瓦大坝为例,利用上述方法识别出了测点位移时间序列规律的隐藏结构变化,通过对比分段数据与全时段数据的统计建模结果表明:本文所提出的算法可以很好地提取到混凝土坝在运行过程中发生的突发异常变化,为分析混凝土坝运行状态提供了有力支撑。

关键词: 水利工程, 大坝安全监控, Gath-Geva, 时间序列分析, 统计模型

Abstract: During the operation of a concrete dam, various uncertainties-such as sudden events, natural disasters, and changes in human management-are possible to impose an impact on it, potentially deviating its structure deformation from the conventional patterns. An accurate identification of such changes is crucial for raising the level of concrete dam warning and forecasting. This paper presents an intelligent method for identifying dam deformation under uncertainties. First, we use a spatial clustering method to categorize measurement points that are located in different regions of the concrete dam structure but share certain similarity. Then, a fuzzy clustering (Gath-Geva) algorithm is used to segment a multivariate time series into different phases, allowing its data points to belong to multiple periods based on the membership degree, to measure the homogeneity of segments and detect changes in its hidden structure. Last, we use a fuzzy decision algorithm based on the cluster compatibility criteria to determine the number of segments required, and adopts the principal component analysis (PCA) to identify the number of principal components, further improving the accuracy of the Gath-Geva algorithm. This intelligent method has been applied in a case study of a concrete arch dam structure to identify the changes hidden in the time series of its displacement measurements. Comparison of its results with those of single-period data shows that it is effective in extracting sudden anomalous changes during the operational phase of the dam, and that it is a valuable approach for assessing the operational conditions of concrete dams.

Key words: hydro-engineering, dam safety monitoring, Gath-Geva, time series analysis, statistical model

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn