水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (6): 50-61.doi: 10.11660/slfdxb.20250606

• • 上一篇    下一篇

中小流域径流预报的图神经网络模型——以福建沙溪流域为例

  

  • 出版日期:2025-06-25 发布日期:2025-06-25

Study on graph neural network-based runoff forecasting model for medium and small-sized watersheds. A case study of Shaxi watershed in Fujian

  • Online:2025-06-25 Published:2025-06-25

摘要: 中小流域径流预测精度与实测降雨站点密度、分布及历史数据序列长短有关。为提高中小流域山洪预警预报精准度,本文基于图论重新定义了福建沙溪流域2000—2014年间具有显著降雨径流关系的小时级降雨-径流模型的数据结构,利用图神经网络构建“端到端”降雨-径流数据动态映射模型,通过图卷积神经网络模型(GCN)、图注意力机制模型(GAT)和切比雪夫图神经网络模型(Chebnet),对未来不同预见期的径流过程进行预测。以平均绝对误差(EMAE)为评价指标,对未来2 h的预测结果与长短期记忆模型(LSTM)、门控循环单元(GRU)和人工神经网络(ANN)的预测结果进行比较。结果表明,Chebnet和GAT模型对沙溪流域预测未来1 h和2 h降雨-径流过程的非线性数据拟合能力更好,相比LSTM和GRU预测精度提高了37.3% ~ 64.71%;Chebnet模型对未来15 h内的径流预测效果较为稳定,在提高精度和适用性的同时,大幅降低了时效性的影响。本文对中小流域径流预报预警具有一定指导意义和参考价值。

关键词: 深度学习, 图神经网络, 切比雪夫图神经网络模型, 模型优化, 中小流域, 径流预报

Abstract: The prediction of river runoff in a small or medium-sized catchment is constrained by the spatial distribution and density of its rain gauges and record length historical rainfall data. To enhance the accuracy of flash flood early warning and forecasting for such catchments, this study redefines the data structure of an hourly rainfall-runoff model based on the graph theory and the 2000-2014 data of the Shaxi River basin. We use graph neural networks (GNNs) to construct an end-to-end dynamic mapping model for its rainfall-runoff data, and predict its future hydrographs at different forecast periods, using Graph Convolutional Neural Network (GCN), Graph Attention Network (GAT), and Chebyshev Graph Neural Network (Chebnet) models. Mean Absolute Error (EMAE) is used as an evaluation indicator to compare the predictions for the next two hours with those by the Long Short-Term Memory (LSTM) models, Gated Recurrent Unit (GRU), and Artificial Neural Networks (ANNs). The results indicate that for this basin, the Chebnet and GAT models are superior in nonlinear data fitting capability for rainfall-runoff predictions at the forecast periods of one and two hours, improving prediction accuracy by 37.3% to 64.7% compared to LSTM and GRU. The Chebnet model exhibits stable performance in its runoff prediction of the next 15 hours, significantly reducing the impact of timeliness while improving accuracy and applicability. This study has achieved highly reliable predictions of river runoff, useful for early flood warning in small and medium-sized catchments.

Key words: deep learning, graph neural network, Chebyshev graph neural network, model optimization, small and medium-sized watershed, runoff forecast

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn