水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (8): 11-19.doi: 10.11660/slfdxb.20250802

• • 上一篇    下一篇

椭球形水滴随机运动的数学模型

  

  • 出版日期:2025-08-25 发布日期:2025-08-25

Mathematical model of random motion of elliptical water droplets

  • Online:2025-08-25 Published:2025-08-25

摘要: 针对水滴在风场中随机运动特性的科学问题,提出水滴稳态变形为椭球形的假设,并采用白噪声来描述因相对风速和水滴运动姿态改变所引起的迎风面积随机性,建立椭球形水滴运动随机微分方程,并对椭球形水滴的运动形态及漂移距离进行检验,验证了椭球形水滴随机运动数学模型的正确性。应用该数学模型计算得到了不同条件下椭球形水滴的离散系数,结果表明:运动过程中的椭球形水滴,因大量空气分子的随机力作用以及水滴迎风面积变化所受到的随机影响作用,与水滴的弗劳德数成正比。

关键词: 泄洪雾化, 椭球形水滴, 迎风面积, 随机微分方程, 白噪声

Abstract: Aiming at the issue of the random motion characteristics of water droplets in a wind field, we formulate a hypothesis that the steady-state deformation of water droplets is ellipsoidal, and uses white noise to describe the randomness of the windward area caused by changes in relative wind speed and water droplet motion posture. A stochastic differential equation is worked out for the motion of ellipsoidal water droplets; their motion shape and drift distance are tested to verify the correctness of this new model. We apply it to calculations of the dispersion coefficients of water droplets under different conditions. The results show that for ellipsoidal droplets in motion, their random effects-produced by the random forces of a large number of air molecules and the changes in their windward area-are directly proportional to their Froude number.

Key words: flood discharge atomization, ellipsoidal water droplets, windward area, stochastic differential equation, noise intensity

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn