水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (4): 85-96.doi: 10.11660/slfdxb.20250409

• • 上一篇    下一篇

多站点多变量天气发生器:日降水与气温随机模拟

  

  • 出版日期:2025-04-25 发布日期:2025-04-25

Multisite multivariate weather generator: stochastic simulations of daily precipitation and air temperature

  • Online:2025-04-25 Published:2025-04-25

摘要: 构建时空相关、物理意义明确的水文气象场对水文模拟而言至关重要。本文耦合多变量一阶自回归模型、一阶马尔可夫链和K近邻模型构建了多站点多变量天气发生器,旨在更好地反映水文气象过程的时空相关性、变量间相关性和年际低频振荡特征。基于所构建的天气发生器,对长江流域12个二级水资源分区日降水量、日最高和最低气温进行随机模拟,采用基础统计特征、相关性特征和年际变化特性等多种指标对模型进行综合评估。结果表明:除对部分站点的最大干旱期/湿润期长度和日最高及最低气温的一阶自相关系数存在一定程度的低估外,多站点多变量天气发生器能很好地重建观测气象场的各种特性指标。本文的研究结果可为分布式随机水文模拟提供参考。

关键词: 多站点多变量随机天气发生器, 空间相关性, 变量间相关性, 年际变化特性, 长江流域

Abstract: Developing a stochastic hydrometeorological field with spatiotemporal correlations and a clear physical coherence is critical for hydrological simulations. This study uses a coupled model of multivariate first-order autoregressive (MAR1) model, a first-order Markov chain, and a K-nearest neighbors (KNN) to develop a multisite, multivariate weather generator that can reflect spatiotemporal dependencies, inter-variable correlations, and low-frequency interannual oscillations inherent in hydrometeorological processes. We have applied this generator to the random simulations of daily precipitation and maximum and minimum air temperatures across 12 secondary water resource divisions in the Yangtze River basin, and achieved physically meaningful meteorological fields that are characterized by temporal and spatial correlations. The model is evaluated comprehensively using several metrics, such as basic statistical characteristics, correlation features, and interannual variability. The results demonstrate the multisite, multivariate weather generator effectively reconstructs a range of characteristic indicators of the observed meteorological fields. However, it does show certain underestimated durations of the maximum drought and wet periods at a few gauge stations, and similar errors in the first-order autocorrelation coefficients for daily maximum and minimum air temperatures. The findings of this study provide valuable insights for distributed stochastic hydrological simulations.

Key words: multisite multivariate weather generator, spatial correlation, inter-variable correlation, inter-annual variability, Yangtze River basin

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn