水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2026, Vol. 45 ›› Issue (1): 99-108.doi: 10.11660/slfdxb.20260110

• • 上一篇    下一篇

混合优化Stacking集成学习算法的帷幕灌浆注灰量预测

  

  • 出版日期:2026-01-25 发布日期:2026-01-25

Prediction of injection volume in curtain grouting using hybrid optimized stacking ensemble learning algorithm

  • Online:2026-01-25 Published:2026-01-25

摘要: 准确预测单位注灰量是管控工程成本与有效规避渗漏安全风险的重要前提。针对大坝帷幕灌浆工程中评价指标与单位注灰量之间的复杂非线性关系,本文提出一种基于Stacking集成学习的预测模型,并与随机森林(RF)、XGBoost和支持向量机(SVM)模型进行对比分析,通过牛顿-拉夫逊优化(NRBO)算法对模型超参数进行优化,并在训练集和验证集上评估了各模型的预测性能。结果表明:Stacking模型在训练集和验证集上的预测精度均显著优于单一模型,其R2分别达到0.998和0.971,RMSE分别为0.350和1.224。相比之下,RF、XGBoost和SVM模型在验证集上的R2分别为0.905、0.930和0.728,RMSE分别为2.219、1.896和3.748。集成学习模型(Stacking、RF、XGBoost)在处理高维非线性数据时具有更强的拟合能力和鲁棒性,而Stacking模型通过集成多个基学习器的优势,进一步提升了预测精度和对异常值的鲁棒性。因此,所提出的NRBO-Stacking模型在大坝帷幕灌浆工程中具有较高的预测精度和泛化能力,为类似复杂工程问题的预测提供了有效的解决方案。

关键词: 大坝工程, 帷幕灌浆, 注灰量预测, 随机森林, NRBO算法, 集成学习模型

Abstract: For a dam curtain-grouting project, accurate prediction of its unit grout injection volume is crucial to engineering cost control and effective mitigation of its seepage-related risks. To address the complicated nonlinear relationship between its evaluation indicators and unit cement consumption, this paper presents a novel prediction model based on stacking ensemble learning, and compares it with the models of Random Forest (RF), XGBoost, and Support Vector Machine (SVM). We optimize the hyper-parameters of these models using a Newton-Raphson-based optimizer (NRBO), and test their predictive performance based on both training sets and validation sets. Results show the stacking model markedly outperforms the single-method models, with R2 = 0.998 and RMSE = 0.350 achieved on the training sets, and R2 = 0.971 and RMSE = 1.224 on the validation sets. By contrast, validation-set R2 values of the three single-method models are 0.905, 0.930 and 0.728 respectively, and RMSEs are 2.219, 1.896 and 3.748 respectively. Ensemble-learning models (Stacking, RF, and XGBoost) feature a stronger fitting capacity and robustness in the case of high-dimensional nonlinear data, while the stacking model, by leveraging the strengths of multiple base learners, further enhances predictive accuracy and robustness to outliers. Thus, our NRBO-Stacking model offers high accuracy, effective solutions, and better generalization performance for dam curtain-grouting projects.

Key words: dam engineering, curtain grouting, cement consumption prediction, random forest, NRBO algorithm, ensemble learning model

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn