水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (8): 81-92.doi: 10.11660/slfdxb.20250808

• • 上一篇    下一篇

球形颗粒应力解析与起裂快速评估:从单体到堆积体

  

  • 出版日期:2025-08-25 发布日期:2025-08-25

Stress analysis and rapid crack assessment of spherical particles: From mono-particle to multi-particle systems

  • Online:2025-08-25 Published:2025-08-25

摘要: 颗粒材料在自然界和工程实践中广泛存在,其在受压下的内部应力分布和破碎行为对堆石坝、路基等工程结构的变形和稳定性影响重大。本文针对球形颗粒对径压缩工况,基于Hiramatsu-Oka(平松-冈,HO)解与Dean-Sneddon-Parsons(迪恩-斯内登-帕森斯,DSP)解这两类分析解,系统探究球形颗粒内部应力分布特征与起裂机制。结果表明,荷载作用范围显著影响颗粒内部应力和起裂位置分布;两类分析解所得颗粒应力分布较为接近,但DSP解可拓展性更具优势。本文进一步将DSP解拓展至多点受载,提出基于SBFEM(比例边界有限元)-DSP的耦合方法。采用SBFEM高效获取颗粒堆积体接触力分布,结合DSP解的应力叠加原理,实现颗粒堆积体系应力场的求解和起裂破坏区域的快速评估。本研究为深入理解颗粒材料压力作用下的应力分布特征和破碎机制提供理论依据,可应用于颗粒堆积体系的变形与潜在破碎率快速评估。

关键词: 颗粒破碎, 解析解, 应力分布, 颗粒堆积体, 比例边界有限元

Abstract: Granular materials are widely used in engineering applications, where their internal stress distribution and fracture behavior greatly influence the stability and safety of structures such as rockfill dams and roadbeds. This study investigates the internal stress distributions and crack initiation mechanisms of spherical particles under uniaxial compression based on two analytical solutions: the Hiramatsu-Oka (HO) solution, and the Dean-Sneddon-Parsons (DSP) solution. The results indicate loading range significantly influences internal stress distribution and crack initiation location. Stress distributions obtained from both solutions are highly consistent, while the DSP solution offers superior extensibility. We further extend the DSP solution to multi-point loading conditions, and develop a rapid evaluation framework for stress distribution and crack initiation in granular assemblies based on an approach of coupling the scaled boundary finite element method (SBFEM) and DSP. This framework efficiently determines contact force distributions in granular assemblies using SBFEM, and applies the stress superposition principle of the DSP solution to achieve a rapid assessment of stress fields and crack initiation zones. The findings lay a theoretical foundation for understanding stress distribution and fracture mechanism in granular materials, and they could be further applied to rapid evaluation of the deformation and potential breakage rates in granular assemblies.

Key words: particle breakage, analytical solution, stress distribution, particle assembly, SBFEM

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn