水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (5): 125-132.doi: 10.11660/slfdxb.20250511

• • 上一篇    下一篇

聚类-自组织神经网络变点分析确定边坡失稳判据研究

  

  • 出版日期:2025-05-25 发布日期:2025-05-25

Define instability criterion of slope by change point analysis of cluster self-organizing maps

  • Online:2025-05-25 Published:2025-05-25

摘要: 强度折减法在边坡稳定性分析中有着广泛的应用,不同的边坡失稳判据各有其特点,位移-折减系数曲线出现突变作为失稳判据更加简易实用。本文通过聚类分析选定位移突变特征点,并采用自组织神经网络变点分析方法识别特征点的位移突变,以此提出一种改进的特征点位移突变判据。采用聚类-自组织神经网络变点分析融合的方法,更具客观性及数学理论基础。针对典型算例,与基于FLAC3D自带的强度折减求解程序计算的安全系数进行比较,聚类-变点分析方法计算出的安全系数更接近裁判值。

关键词: 边坡, 聚类分析, 自组织神经网络, 变点分析, 强度折减法

Abstract: The strength reduction method is widely used for slope stability analysis, and different instability criteria have their own characteristics. Among them, a simple and practical one is the mutation in the displacement reduction coefficient curve. This study uses cluster analysis to select the displacement mutation feature point, and identifies its mutation using the self-organizing neural network change point analysis method. Then, we suggest an improved criterion for this mutation. Such a fusion method-that clusters such an analysis-is more objective and mathematically based. For typical examples, safety factors calculated by this analysis method are closer to the judging values than those of the strength reduction method built in FLAC3D.

Key words: slope, clustering analysis, self-organizing maps, change point analysis, strength reduction method

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn