水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2015, Vol. 34 ›› Issue (12): 123-130.doi: 10.11660/slfdxb.20151214

• 水力发电 • 上一篇    下一篇

基于随机共振和多维度排列熵的水电机组振动故障诊断

  

  • 出版日期:2015-12-25 发布日期:2015-12-25

Vibration fault diagnosis of hydropower unit by using stochastic resonance and multidimensional permutation entropy

  • Online:2015-12-25 Published:2015-12-25

Abstract: Aiming at the issue that the characteristics of hydropower unit vibration faults are difficult to extract under strong background noises, this paper presents a fault diagnosis method using the techniques of stochastic resonance (SR) denoising and multidimensional permutation entropy (MPE) for extraction of the characteristic vectors from vibration signals. This method first denoises a vibration signal using stochastic resonance to enhance its stochastic resonance, then uses MPE to extract its feature vectors. Taking the feature vectors as input, an improved particle swarm algorithm and support vector machine model is able to achieve identification and diagnosis of the signal faults. Our simulations show that the method enables the fault diagnosis of hydropower units with high accuracy.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn