水力发电学报
          Home  |  About Journal  |  Editorial Board  |  Instruction  |  Download  |  Contact Us  |  Ethics policy  |  News  |  中文

Journal of Hydroelectric Engineering ›› 2024, Vol. 43 ›› Issue (4): 23-33.doi: 10.11660/slfdxb.20240403

Previous Articles     Next Articles

Analysis of electricity carbon emission levels in China in background of carbon neutrality

  

  • Online:2024-04-25 Published:2024-04-25

Abstract: The low-carbon transformation of electricity has an overall strategic significance for China to achieve the goal of carbon neutrality. This paper presents an analysis and predictions of the power growth process and phased development goals in China in the next 40 years, on the basis of summarizing the developing process of low-carbon electricity in the past 10 years, and taking population, urbanization, economic aggregate, and economic structure as the boundary conditions and driving forces. We examine the influence of a variety of factors on the carbon emission level-such as fossil power proportion, terminal power consumption proportion, nuclear power development scale, and Carbon Capture, Utilization, and Storage (CCUS)-with the constraints of system security and supply-demand balance. We estimate that the total carbon emission from electricity will reach its peak around 2035, 6 - 6.5 billion tons, and then be reduced year by year down to a level below 1 billion tons in 2060. With the help of CCUS technology, zero electricity emissions can be achieved. Finally, in view of the long-term coexistence of demand growth and low-carbon transformation, we suggest that future power development be based on the premise of safe supply, giving priority to the development of renewable energy power, multi-energy development, and a wider range of multi-energy complementary coordinated development and complementary operation.

Key words: energy and power, carbon neutrality, electric power mix, carbon emission level

Copyright © Editorial Board of Journal of Hydroelectric Engineering
Supported by:Beijing Magtech