水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (5): 99-112.doi: 10.11660/slfdxb.20250509

• • 上一篇    下一篇

堆石坝变形宏细观分析的MPM-DEM层级多尺度方法

  

  • 出版日期:2025-05-25 发布日期:2025-05-25

MPM-DEM hierarchical multiscale method for macroscopic and microscopic analysis of deformation in rockfill dams

  • Online:2025-05-25 Published:2025-05-25

摘要: 本研究提出了一种深入分析堆石坝施工运行过程中变形机制的新方法,物质点法(MPM)与离散元法(DEM)耦合的层级多尺度计算方法。堆石坝作为重要的水利工程结构,其变形过程涉及复杂的颗粒级别与坝体整体响应的相互作用。理解其细观变形机理对大坝的安全评估、设计和施工至关重要。为了全面捕捉堆石坝的变形特点,本文将坝体离散为多个代表性体积单元(RVE),并在颗粒尺度上进行模拟,捕捉坝体的局部应力和颗粒接触力变化。通过对堆石坝不同施工阶段应力变形的空间分布规律进行分析,揭示了水位变化对坝体偏应力和颗粒接触行为的显著影响。竣工期最大沉降特征点表现出显著的接触各向异性,垂直方向的力链较为密集,表明坝体在竖直方向上的应力传递效率较高;随着水位升高,坝体的接触状态和力链分布发生了显著变化,坝体最大沉降点的水平向各向异性增强,坝体对水压力的抵抗能力提高;在正常蓄水位阶段,主堆石区的上游侧颗粒接触减弱,配位数下降。本文所采用的多尺度方法避免了传统分析手段的局限,为堆石坝的变形预测、长期稳定性评估和设计优化提供了新的定量分析框架。

关键词: 水利工程, 堆石坝, 颗粒材料, 多尺度模拟, 变形预测

Abstract: This study develops a new method for in-depth analysis of the deformation mechanism during the construction and operation of rockfill dams, using a hierarchical multiscale computational approach that couples the Material Point Method (MPM) with the Discrete Element Method (DEM). As a critical type of structure in hydraulic engineering, a rockfill dam features deformation that involves complicated interaction between its particle-scale behavior and the overall response of its body; Understanding the mechanism of its micromechanical deformation is crucial for safety assessment, design, and construction. Aiming at a comprehensive capture of the deformation characteristics of a rockfill dam, we first discretize its body into multiple representative volume elements (RVEs), then simulate its behavior at the particle scale and capture variations in local stress and particle contact force in its body. For the different stages of dam construction, analysis of the spatial distribution patterns of stress and deformation reveals a significant impact of reservoir water level changes on its deviatoric stress and particle contact behavior. In the completion stage, the maximum settlement feature points exhibit significant contact anisotropy, with denser force chains in the vertical direction, indicating a higher efficiency of stress transfer in this direction. As the water level rises, significant changes occur in the contact state and force chain distribution in the dam body, resulting in an increased horizontal anisotropy at the maximum settlement point, thereby enhancing the dam's resistance to water pressure. During the normal reservoir stage, particle contact on the upstream side of the main rockfill zone weakens, and the coordination number decreases. The multiscale method developed in this study overcomes the limitations of traditional analytical approaches, providing a new quantitative framework for the deformation prediction, long-term stability evaluation, and design optimization of rockfill dams.

Key words: hydraulic engineering, rockfill dam, granular material, multiscale simulation, deformation prediction

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn