水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (5): 33-43.doi: 10.11660/slfdxb.20250504

• • 上一篇    下一篇

堰塞坝数据库插补及稳定性评价

  

  • 出版日期:2025-05-25 发布日期:2025-05-25

Database imputation and stability evaluation for landslide dams

  • Online:2025-05-25 Published:2025-05-25

摘要: 堰塞坝溃决洪水严重威胁下游人民生命财产安全,定量分析坝体稳定性是下游风险评估的重要基础。然而,堰塞坝数据库的不完整、不平衡极大影响数据驱动模型开发。本研究利用五种机器学习算法,即支持向量机、随机森林、极限梯度提升树、轻量级梯度提升机和K最近临法建立了考虑地貌特征、水文参数、坝体材料、气候条件的堰塞坝稳定性评估模型。首先确定了不同因素的最优插补方法,进而利用过采样、欠采样和混合采样平衡样本以克服模型偏向性。五折交叉验证结果表明,过采样极限梯度提升树性能较好,平均准确率为0.84,偏向性为0.24,综合评价指数为1.32。最后,典型堰塞坝验证结果表明,本文提出的模型性能优于现存模型,可为应急预案设置提供新思路。

关键词: 堰塞坝, 稳定性, 数据库插补, 模型评价, 采样方法

Abstract: Landslide damming and subsequent flood breaches pose significant threats to the human lives and property of the downstream communities, and quantitative analysis of dam stability is essential for downstream risk assessment and disaster prevention. However, incomplete, imbalanced landslide dam databases severely impact the development of data-driven models. This study develops a stability assessment model for landslide dams that integrates five machine learning algorithms-Support Vector Machine (SVM), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and K Nearest Neighbor (KNN)-and accounts for geomorphological parameters, hydrological conditions, dam materials, and climate factors. We identify optimal methods for imputation of various factors, then apply three sampling techniques (oversampling, undersampling, and hybrid sampling) to balance the data and mitigate model bias while examining their combined effects on model performance. Five-fold cross-validation results indicate the oversampling combined with LightGBM achieves an average accuracy of 0.84, a bias of 0.24, and a comprehensive evaluation index (CEI) of 1.32, outperforming other algorithms. Validation in typical landslide dam cases shows that our new model outperforms previous models, offering a novel approach to emergency response planning.

Key words: landslide dam, stability, database imputation, model evaluation, sampling method

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn