水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报

• •    

基于自适应特征与优化KELM的抽蓄机组振动预测

  

  • 出版日期:2025-04-07 发布日期:2025-04-07

Vibration prediction of pumped storage units based on adaptive feature and optimized KELM

  • Online:2025-04-07 Published:2025-04-07

摘要: 为了减小振动信号的非线性与非平稳特性对振动预测精度的影响,本文提出了一种基于自适应特征与优化核极限学习机(KELM)的抽蓄机组振动预测方法。首先,利用改进的自适应噪声完全集成经验模态分解(ICEEMDAN)对振动信号进行分解,获得不同频率成分的本征模态分量;其次,采用自编码器(AE)对所得分量进行自适应特征提取,动态捕捉关键特征;然后,建立KELM预测模型分别对各分量进行预测,并提出差分进化—改进哈里斯鹰算法(DEIHHO)对KELM的正则化参数与核参数进行优化,进而叠加各分量预测结果得到机组振动的最终预测结果;最后,通过实例验证表明,所提方法具有较好的预测性能,能够有效提高抽水蓄能机组振动预测的准确性。

Abstract: To reduce the impact of the nonlinear and non-stationary characteristics of vibration signals on the accuracy of vibration prediction, a vibration prediction method of pumped storage units based on adaptive feature and optimized kernel extreme learning machine (KELM) is proposed in this paper. Firstly, the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is used to decompose the vibration signal, and the intrinsic mode components of different frequency components are obtained. Secondly, autoencoder is used to adaptively extract the features of the obtained components, and the key features are dynamically captured. Then, the KELM prediction model is established to predict each component respectively, and DEIHHO is proposed to optimize the regularization parameter and kernel parameter of KELM, and then the final prediction result of unit vibration is obtained by superadding the prediction results of each component. Finally, the experimental results show that the proposed method has better prediction performance and can effectively improve the accuracy of vibration prediction of pumped storage units.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn