水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报

• •    

聚类-自组织神经网络变点分析确定边坡失稳判据研究

  

  • 发布日期:2025-03-06

Define instability criterion of slope by cluster self-organizing maps change point analysis

  • Published:2025-03-06

摘要: 强度折减法在边坡稳定性分析中有着广泛的应用,不同的边坡失稳判据各有其特点,位移-折减系数曲线出现突变作为失稳判据更加简易实用。本文通过聚类分析选定位移突变特征点,并采用自组织神经网络变点分析方法识别特征点的位移突变,以此提出一种改进的特征点位移突变判据。采用聚类-自组织神经网络变点分析融合的方法,更具客观性及数学理论基础。针对典型算例,与基于FLAC3D自带的强度折减求解程序计算的安全系数进行比较,聚类-变点分析方法计算出的安全系数更接近裁判值。

Abstract: The strength reduction method is widely used to slope stability analysis. Different criteria for slope instability have their own characteristics. The mutation in the displacement reduction coefficient curve is a simpler and more practical criterion for instability. Displacement mutation feature point is selected by cluster analysis. Displacement mutation of feature point is identified using self-organizing neural network change point analysis method. An improved criterion for feature point displacement mutation is proposed based on above-mentioned method. The fusion method of clustering self-organizing neural network change point analysis is more objective and mathematically based. For typical examples, the safety factor calculated by clustering-change point analysis method is closer to the judging value, compared with the safety factor calculated by the strength reduction method based on FLAC3D.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn