水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2018, Vol. 37 ›› Issue (6): 25-33.doi: 10.11660/slfdxb.20180604

• 当期目录 • 上一篇    下一篇

基于改进萤火虫算法的水电站群优化调度

  

  • 出版日期:2018-06-25 发布日期:2018-06-25

Optimal operation of reservoirs based on improved firefly algorithm

  • Online:2018-06-25 Published:2018-06-25

摘要: 为探讨水电站群优化调度新方法,在标准萤火虫算法原理的基础上,引入了隔代大步长纯随机游走、优势保留和变异机制等寻优机制,提出了改进的萤火虫算法。以黑河梯级水电站群为应用实例,建立和求解了梯级发电量最大的中长期优化调度模型,获得了如下结论:(1)梯级发电量最大时,龙头水库水位呈丰水期快速蓄满、维持高水头运行、枯水期缓慢下降至死水位的变化规律;(2)由参数敏感性分析得到了扰动因子、荧光吸收因子和随机搜索间隔代数的最优值;(3)不同算法的对比分析说明IFA的准确性、稳定性、寻优能力均最优。研究成果对于指导黑河梯级水电站经济运行具有重要的实际意义。

Abstract: To explore a new method for solving the optimal operation problem of a hydropower station group, this paper presents an improved firefly algorithm (IFA) that adopts the large-scale random walk, dominant reservation, and mutation mechanism. A mid-long term optimal operation model of maximal cascade power generation is developed and solved using IFA in a case study of the Heihe hydropower station group. The following conclusions are obtained: (1) When the power generation is maximized, the leading reservoir is filled up rapidly in high water season and maintains a high stage operation, and the reservoir stage goes down gradually to the dead water level in the dry season. (2) Optimal values of a disturbance factor, a fluorescence absorption factor, and stochastic search interval algebra are obtained using parameter sensitivity analysis. (3) Compared with two other algorithms, IFA is better in accuracy, stability, and optimization ability. The results are practically significant to the operation of the Heihe cascade hydropower stations.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn