水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (9): 73-88.doi: 10.11660/slfdxb.20250907

• • 上一篇    下一篇

数字孪生水利监测感知网多参数时序预测模型

  

  • 出版日期:2025-09-25 发布日期:2025-09-25

Multi-parameter time series prediction model for digital twin water conservancy monitoring sensor networks

  • Online:2025-09-25 Published:2025-09-25

摘要: 针对传统单点时序预测模型难以捕捉数字孪生水利监测感知网中设备的空间关系导致的关联特征缺失问题,以及模型结构与参数设计主观性强带来的不确定性问题,本文提出了一种基于贝叶斯优化与Hyperband、自学习图结构和双向长短期记忆网络的监测感知网多参数时序预测模型。首先,生成自学习图结构,通过图神经网络提取感知网空间特征;其次,利用双向长短期记忆网络提取时序特征;进一步,采用BOHB(Bayesian optimization & Hyperband)方法优化超参数,提升模型预测精度;最后,对监测感知网的未来状态进行前瞻预测。经验证,与多种预测模型相比,所提模型在R2、RMSE、MAE、MAPE和RMSRE方面优化率达4.35%、33.14%、20.47%、9.09%和15.03%以上,精度更高且泛化能力更强,具有显著性能优势。

关键词: 数字孪生水利, 监测感知网, 自学习动态图结构, 图神经网络, 双向长短期记忆网络, 贝叶斯优化

Abstract: For digital twin hydraulic monitoring perception networks, traditional single-point time series prediction models fail to capture spatial relationships among the devices, and cause missing correlation features; Uncertainty issues arising from strong subjectivity in model structure and parameter design. To address these issues, this paper presents a multi-parameter time series prediction model for monitoring perception networks based on the Bayesian optimization and Hyperband (BOHB), self-learning graph structures, and Bidirectional Long Short-Term Memory (BiLSTM) networks. First, a self-learning graph structure is generated to extract spatial features of the perception network using graph neural networks. Then, the bidirectional Long Short-Term Memory networks are used to extract temporal features, and the BOHB method is used to optimize hyperparameters and improve prediction accuracy. Finally, the model is applied to proactive predictions of future states of the monitoring perception network. We have verified that our new model has achieved optimization rates higher more than 4.35%, 33.14%, 20.47%, 9.09% and 15.03% in R2, RMSE, MAE, MAPE and RMSRE respectively, enjoys higher accuracy and stronger generalization ability compared with a variety of previous prediction models, and has significant performance advantages.

Key words: digital twin water conservancy, monitoring network, self-learning dynamic graph structure, graph neural network, bidirectional long short-term memory network, Bayesian optimization

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn